npx skills add 0xhubed/agent-trading-arenaREADME
Agent Arena
Can AI Learn to Trade by Watching AI Trade?
An experimental platform exploring autonomous AI learning. Multiple LLM traders compete on simulated crypto futures (using live Binance market data) while an Observer Agent watches every decision and outcome, identifies winning patterns, and writes them as reusable skills.
Note: This is a paper trading simulation - no real money is involved.
The Experiment
The question: Can AI extract trading knowledge just by watching other AI trade?
┌─────────────────────────────────────────────────────────────────┐
│ AGENT ARENA │
├─────────────────────────────────────────────────────────────────┤
│ │
│ AI Traders (GPT, Llama, Qwen) │
│ │ │
│ ▼ │
│ ┌─────────────┐ Real Binance ┌──────────────┐ │
│ │ Decisions │ ◄─── Market Data │ Outcomes │ │
│ └──────┬──────┘ └──────┬───────┘ │
│ │ │ │
│ └──────────────┬───────────────────┘ │
│ ▼ │
│ ┌─────────────────┐ │
│ │ Observer Agent │ │
│ │ (Watches All) │ │
│ └────────┬────────┘ │
│ ▼ │
│ ┌─────────────────┐ │
│ │ Learned Skills │ │
│ │ (Markdown + │ │
│ │ Embeddings) │ │
│ └────────┬────────┘ │
│ ▼ │
│ ┌─────────────────┐ │
│ │ Skill-Aware │ │
│ │ Agents Apply │ │
│ │ Learned Wisdom │ │
│ └─────────────────┘ │
│ │
│ "The trading arena is the lab; the Observer is the scientist" │
└─────────────────────────────────────────────────────────────────┘
How It Works
- AI Traders - LLM agents (GPT, Llama, Qwen) make autonomous trading decisions every 5 minutes on real market data
- Observer Agent - Analyzes thousands of decisions and their outcomes using Claude Opus
- Skill Extraction - Winning patterns become versioned skills with statistical confidence
- Knowledge Reuse - Skill-aware agents retrieve and apply learned knowledge via semantic search
Quick Start
# Install
pip install -e ".[dev,api]"
# Set up environment
cp .env.example .env
# Add your API keys: ANTHROPIC_API_KEY, OPENAI_API_KEY, TOGETHER_API_KEY
# Run API server with dashboard
uvicorn agent_arena.api.app:app --reload --port 8000
# Start frontend (separate terminal)
cd frontend && npm install && npm run dev
# Trigger Observer analysis
curl -X POST http://localhost:8000/api/observer/analyze
Agent Tiers
| Tier | Purpose | Agents |
|---|---|---|
| Learning | Apply & improve skills | Skill-Aware, Skill-Only traders |
| Data Generation | Generate decision/outcome data | GPT-4, Qwen, Llama, DeepSeek |
| Baselines | Benchmarks (no LLM cost) | TA Bot, Index Fund |
| Observer | Extract patterns, write skills | Claude Opus |
Tech Stack
- Backend: Python, FastAPI, LangGraph
- LLMs: Claude, GPT, Llama, Qwen (via Together AI)
- Database: SQLite (default) or PostgreSQL + pgvector for semantic skill retrieval
- Frontend: React, TypeScript, Tailwind, Recharts
- Real-time: WebSockets for live updates
Skills System
The Observer Agent writes learned patterns as structured Markdown skills:
skills/
├── trading-wisdom/ # Core insights
├── market-regimes/ # Regime-specific strategies
├── risk-management/ # Position sizing, stop-losses
└── entry-signals/ # Entry patterns with success rates
Skills are:
- Versioned in PostgreSQL with content hashes
- Searchable via embeddings (pgvector)
- Refined over time as patterns are confirmed or contradicted
Project Structure
agent_arena/
├── core/ # Stable core (arena, runner, models)
├── agents/ # Agent implementations
│ ├── observer_agent.py # Watches & learns
│ ├── skill_aware_*.py # Applies learned skills
│ ├── learnin
...
Publisher
Statistics
Stars0
Forks0
Open Issues0
LicenseMIT License
CreatedJan 18, 2026