llm-patterns
Opinionated project initialization for Claude Code. Security-first, spec-driven, AI-native.
448 stars37 forksUpdated Jan 20, 2026
npx skills add https://github.com/alinaqi/claude-bootstrap --skill llm-patternsSKILL.md
LLM Patterns Skill
Load with: base.md + [language].md
For AI-first applications where LLMs handle logical operations.
Core Principle
LLM for logic, code for plumbing.
Use LLMs for:
- Classification, extraction, summarization
- Decision-making with natural language reasoning
- Content generation and transformation
- Complex conditional logic that would be brittle in code
Use traditional code for:
- Data validation (Zod/Pydantic)
- API routing and HTTP handling
- Database operations
- Authentication/authorization
- Orchestration and error handling
Project Structure
project/
├── src/
│ ├── core/
│ │ ├── prompts/ # Prompt templates
│ │ │ ├── classify.ts
│ │ │ └── extract.ts
│ │ ├── llm/ # LLM client and utilities
│ │ │ ├── client.ts # LLM client wrapper
│ │ │ ├── schemas.ts # Response schemas (Zod)
│ │ │ └── index.ts
│ │ └── services/ # Business logic using LLM
│ ├── infra/
│ └── ...
├── tests/
│ ├── unit/
│ ├── integration/
│ └── llm/ # LLM-specific tests
│ ├── fixtures/ # Saved responses for deterministic tests
│ ├── evals/ # Evaluation test suites
│ └── mocks/ # Mock LLM responses
└── _project_specs/
└── prompts/ # Prompt specifications
LLM Client Pattern
Typed LLM Wrapper
// core/llm/client.ts
import Anthropic from '@anthropic-ai/sdk';
import { z } from 'zod';
const client = new Anthropic();
interface LLMCallOptions<T> {
prompt: string;
schema: z.ZodSchema<T>;
model?: string;
maxTokens?: number;
}
export async function llmCall<T>({
prompt,
schema,
model = 'claude-sonnet-4-20250514',
maxTokens = 1024,
}: LLMCallOptions<T>): Promise<T> {
const response = await client.messages.create({
model,
max_tokens: maxTokens,
messages: [{ role: 'user', content: prompt }],
});
const text = response.content[0].type === 'text'
? response.content[0].text
: '';
// Parse and validate response
const parsed = JSON.parse(text);
return schema.parse(parsed);
}
Structured Outputs
// core/llm/schemas.ts
import { z } from 'zod';
export const ClassificationSchema = z.object({
category: z.enum(['support', 'sales', 'feedback', 'other']),
confidence: z.number().min(0).max(1),
reasoning: z.string(),
});
export type Classification = z.infer<typeof ClassificationSchema>;
Prompt Patterns
Template Functions
// core/prompts/classify.ts
export function classifyTicketPrompt(ticket: string): string {
return `Classify this support ticket into one of these categories:
- support: Technical issues or help requests
- sales: Pricing, plans, or purchase inquiries
- feedback: Suggestions or complaints
- other: Anything else
Respond with JSON:
{
"category": "...",
"confidence": 0.0-1.0,
"reasoning": "brief explanation"
}
Ticket:
${ticket}`;
}
Prompt Versioning
// core/prompts/index.ts
export const PROMPTS = {
classify: {
v1: classifyTicketPromptV1,
v2: classifyTicketPromptV2, // improved accuracy
current: classifyTicketPromptV2,
},
} as const;
Testing LLM Calls
1. Unit Tests with Mocks (Fast, Deterministic)
// tests/llm/mocks/classify.mock.ts
export const mockClassifyResponse = {
category: 'support',
confidence: 0.95,
reasoning: 'User is asking for help with login',
};
// tests/unit/services/ticket.test.ts
import { classifyTicket } from '../../../src/core/services/ticket';
import { mockClassifyResponse } from '../../llm/mocks/classify.mock';
// Mock the LLM client
vi.mock('../../../src/core/llm/client', () => ({
llmCall: vi.fn().mockResolvedValue(mockClassifyResponse),
}));
describe('classifyTicket', () => {
it('returns classification for ticket', async () => {
const result = await classifyTicket('I cannot log in');
expect(result.category).toBe('support');
expect(result.confidence).toBeGreaterThan(0.9);
});
});
2. Fixture Tests (Deterministic, Tests Parsing)
// tests/llm/fixtures/classify.fixtures.json
{
"support_ticket": {
"input": "I can't reset my password",
"expected_category": "support",
"raw_response": "{\"category\":\"support\",\"confidence\":0.98,\"reasoning\":\"Password reset is a support issue\"}"
}
}
// tests/llm/classify.fixture.test.ts
import fixtures from './fixtures/classify.fixtures.json';
import { ClassificationSchema } from '../../src/core/llm/schemas';
describe('Classification Response Parsing', () => {
Object.entries(fixtures).forEach(([name, fixture]) => {
it(`parses ${name} correctly`, () => {
const parsed = JSON.parse(fixture.raw_response);
const result = ClassificationSchema.parse(parsed);
expect(result.category).toBe(fixture.expected_category);
});
});
});
3. Evaluation Tests (Slow, R
...
Repository Stats
Stars448
Forks37
LicenseMIT License