skill-seekers
from bahayonghang/my-claude-code-settings
我的Claude Code配置,包括commands,skills等
npx skills add https://github.com/bahayonghang/my-claude-code-settings --skill skill-seekersSKILL.md
Skill Seekers
Prerequisites
pip install skill-seekers
# Or: uv pip install skill-seekers
Commands
| Source | Command |
|---|---|
| Local code | skill-seekers-codebase --directory ./path |
| Docs URL | skill-seekers scrape --url https://... |
| GitHub | skill-seekers github --repo owner/repo |
skill-seekers pdf --file doc.pdf |
Quick Start
# Analyze local codebase
skill-seekers-codebase --directory /path/to/project --output output/my-skill/
# Package for Claude
yes | skill-seekers package output/my-skill/ --no-open
Options
| Flag | Description |
|---|---|
--depth surface/deep/full | Analysis depth |
--skip-patterns | Skip pattern detection |
--skip-test-examples | Skip test extraction |
--ai-mode none/api/local | AI enhancement |
Skill_Seekers Codebase
Description
Local codebase analysis and documentation generated from code analysis.
Path: /home/lyh/Documents/Skill_Seekers
Files Analyzed: 140
Languages: Python
Analysis Depth: deep
When to Use This Skill
Use this skill when you need to:
- Understand the codebase architecture and design patterns
- Find implementation examples and usage patterns
- Review API documentation extracted from code
- Check configuration patterns and best practices
- Explore test examples and real-world usage
- Navigate the codebase structure efficiently
⚡ Quick Reference
Codebase Statistics
Languages:
- Python: 140 files (100.0%)
Analysis Performed:
- ✅ API Reference (C2.5)
- ✅ Dependency Graph (C2.6)
- ✅ Design Patterns (C3.1)
- ✅ Test Examples (C3.2)
- ✅ Configuration Patterns (C3.4)
- ✅ Architectural Analysis (C3.7)
🎨 Design Patterns Detected
From C3.1 codebase analysis (confidence > 0.7)
- Factory: 44 instances
- Strategy: 28 instances
- Observer: 8 instances
- Builder: 6 instances
- Command: 3 instances
Total: 90 high-confidence patterns
See references/patterns/ for complete pattern analysis
📝 Code Examples
High-quality examples extracted from test files (C3.2)
Workflow: test full join multigraph (complexity: 1.00)
G = nx.MultiGraph()
G.add_node(0)
G.add_edge(1, 2)
H = nx.MultiGraph()
H.add_edge(3, 4)
U = nx.full_join(G, H)
assert set(U) == set(G) | set(H)
assert len(U) == len(G) + len(H)
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
U = nx.full_join(G, H, rename=('g', 'h'))
assert set(U) == {'g0', 'g1', 'g2', 'h3', 'h4'}
assert len(U) == len(G) + len(H)
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
G = nx.MultiDiGraph()
G.add_node(0)
G.add_edge(1, 2)
H = nx.MultiDiGraph()
H.add_edge(3, 4)
U = nx.full_join(G, H)
assert set(U) == set(G) | set(H)
assert len(U) == len(G) + len(H)
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
U = nx.full_join(G, H, rename=('g', 'h'))
assert set(U) == {'g0', 'g1', 'g2', 'h3', 'h4'}
assert len(U) == len(G) + len(H)
assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
Instantiate DataFrame: See gh-7407 (complexity: 1.00)
df = pd.DataFrame([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]], index=[1010001, 2, 1, 1010002], columns=[1010001, 2, 1, 1010002])
test edge removal (complexity: 1.00)
embedding_expected.set_data({1: [2, 7], 2: [1, 3, 4, 5], 3: [2, 4], 4: [3, 6, 2], 5: [7, 2], 6: [4, 7], 7: [6, 1, 5]})
assert nx.utils.graphs_equal(embedding, embedding_expected)
Instantiate Graph: test graph1 (complexity: 1.00)
G = nx.Graph([(3, 10), (2, 13), (1, 13), (7, 11), (0, 8), (8, 13), (0, 2), (0, 7), (0, 10), (1, 7)])
Instantiate Graph: test graph2 (complexity: 1.00)
G = nx.Graph([(1, 2), (4, 13), (0, 13), (4, 5), (7, 10), (1, 7), (0, 3), (2, 6), (5, 6), (7, 13), (4, 8), (0, 8), (0, 9), (2, 13), (6, 7), (3, 6), (2, 8)])
Configuration example: test davis birank (complexity: 1.00)
answer = {'Laura Mandeville': 0.07, 'Olivia Carleton': 0.04, 'Frances Anderson': 0.05, 'Pearl Oglethorpe': 0.04, 'Katherina Rogers': 0.06, 'Flora Price': 0.04, 'Dorothy Murchison': 0.04, 'Helen Lloyd': 0.06, 'Theresa Anderson': 0.07, 'Eleanor Nye': 0.05, 'Evelyn Jefferson': 0.07, 'Sylvia Avondale': 0.07, 'Charlotte McDowd': 0.05, 'Verne Sanderson': 0.05, 'Myra Liddel': 0.05, 'Brenda Rogers': 0.07, 'Ruth DeSand': 0.05, 'Nora Fayette': 0.07, 'E8': 0.11, 'E7': 0.09, 'E10': 0.07, 'E9': 0.1, 'E13': 0.05, 'E3': 0.07, 'E12': 0.07, 'E11': 0.06, 'E2': 0.05, 'E5': 0.08, 'E6': 0.08, 'E14': 0.05, 'E4': 0.06, 'E1': 0.05}
Configuration example: test davis birank with personalization (complexity: 1.00)
answer = {'Laura Mandeville': 0.29, 'Olivia Carleton': 0.02, 'Frances Anderson': 0.06, 'Pearl Oglethorpe': 0.04, 'Katherina Rogers': 0.04, 'Flora Price': 0.02, 'Dorothy Murchison': 0.03, 'Helen Lloyd': 0.04, 'Theresa Anderson': 0.08, 'Elea
...