chart-generator
Comprehensive development toolkit: 52 professional skills for Claude Code across development, code quality, API, database, security, DevOps, data analytics, and collaboration
19 stars4 forksUpdated Oct 20, 2025
npx skills add https://github.com/curiouslearner/devkit --skill chart-generatorSKILL.md
Chart Generator Skill
Generate charts and visualizations from data using various charting libraries and formats.
Instructions
You are a data visualization expert. When invoked:
-
Analyze Data:
- Understand data structure and types
- Identify appropriate chart types
- Detect data patterns and trends
- Calculate aggregations and statistics
- Determine visualization goals
-
Generate Charts:
- Create bar, line, pie, scatter plots
- Generate heatmaps and tree maps
- Create histograms and box plots
- Build time series visualizations
- Design multi-dimensional charts
-
Style and Customize:
- Apply color schemes and themes
- Add labels, legends, and annotations
- Format axes and gridlines
- Customize tooltips and interactions
- Ensure accessibility and readability
-
Export and Embed:
- Save as PNG, SVG, PDF
- Generate interactive HTML charts
- Embed in markdown reports
- Create chart APIs
- Support responsive design
Usage Examples
@chart-generator data.csv --type bar
@chart-generator --line --time-series
@chart-generator --pie --group-by category
@chart-generator --scatter x:age y:income
@chart-generator --heatmap --correlation
@chart-generator --interactive --html
Chart Types and Use Cases
When to Use Each Chart Type
| Chart Type | Best For | Example Use Case |
|---|---|---|
| Bar Chart | Comparing categories | Sales by product |
| Line Chart | Trends over time | Revenue over months |
| Pie Chart | Part-to-whole relationships | Market share |
| Scatter Plot | Relationships between variables | Height vs Weight |
| Histogram | Distribution of values | Age distribution |
| Box Plot | Statistical distribution | Salary ranges by department |
| Heatmap | Matrix data, correlations | Feature correlations |
| Area Chart | Cumulative trends | Stacked revenue streams |
| Bubble Chart | 3-dimensional data | Sales vs Profit vs Market Share |
| Treemap | Hierarchical data | Disk space usage |
Python - Matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def create_bar_chart(data, x_col, y_col, title='Bar Chart', output='chart.png'):
"""
Create a bar chart
"""
plt.figure(figsize=(10, 6))
if isinstance(data, pd.DataFrame):
x = data[x_col]
y = data[y_col]
else:
x = data['labels']
y = data['values']
bars = plt.bar(x, y, color='steelblue', alpha=0.8)
# Add value labels on bars
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.1f}',
ha='center', va='bottom')
plt.title(title, fontsize=16, fontweight='bold')
plt.xlabel(x_col if isinstance(data, pd.DataFrame) else 'Category', fontsize=12)
plt.ylabel(y_col if isinstance(data, pd.DataFrame) else 'Value', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', alpha=0.3)
plt.tight_layout()
plt.savefig(output, dpi=300, bbox_inches='tight')
plt.close()
return output
def create_line_chart(data, x_col, y_col, title='Line Chart', output='chart.png'):
"""
Create a line chart
"""
plt.figure(figsize=(12, 6))
if isinstance(data, pd.DataFrame):
x = data[x_col]
y = data[y_col]
else:
x = data['x']
y = data['y']
plt.plot(x, y, marker='o', linewidth=2, markersize=6, color='steelblue')
# Add grid
plt.grid(True, alpha=0.3)
plt.title(title, fontsize=16, fontweight='bold')
plt.xlabel(x_col if isinstance(data, pd.DataFrame) else 'X', fontsize=12)
plt.ylabel(y_col if isinstance(data, pd.DataFrame) else 'Y', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.savefig(output, dpi=300, bbox_inches='tight')
plt.close()
return output
def create_pie_chart(data, labels_col, values_col, title='Pie Chart', output='chart.png'):
"""
Create a pie chart
"""
plt.figure(figsize=(10, 8))
if isinstance(data, pd.DataFrame):
labels = data[labels_col]
values = data[values_col]
else:
labels = data['labels']
values = data['values']
# Create color palette
colors = plt.cm.Set3(np.linspace(0, 1, len(labels)))
# Create pie chart
wedges, texts, autotexts = plt.pie(
values,
labels=labels,
autopct='%1.1f%%',
startangle=90,
colors=colors,
explode=[0.05] * len(labels) # Slightly separate slices
)
# Style percentage text
for autotext in autotexts:
autotext.set_color('white')
autotext.set_fontweight('bold')
autotext.set_fontsize(10)
plt.title(title, fontsize=16, fontweight='bold')
plt.axis('equal')
plt.tight_layout()
plt.savefig(output, dpi=300, bbox_inches='tight')
plt.close()
return output
def create_scatter_plot(data, x
...
Repository
curiouslearner/devkitParent repository
Repository Stats
Stars19
Forks4
LicenseMIT License