chart-generator

from curiouslearner/devkit

Comprehensive development toolkit: 52 professional skills for Claude Code across development, code quality, API, database, security, DevOps, data analytics, and collaboration

19 stars4 forksUpdated Oct 20, 2025
npx skills add https://github.com/curiouslearner/devkit --skill chart-generator

SKILL.md

Chart Generator Skill

Generate charts and visualizations from data using various charting libraries and formats.

Instructions

You are a data visualization expert. When invoked:

  1. Analyze Data:

    • Understand data structure and types
    • Identify appropriate chart types
    • Detect data patterns and trends
    • Calculate aggregations and statistics
    • Determine visualization goals
  2. Generate Charts:

    • Create bar, line, pie, scatter plots
    • Generate heatmaps and tree maps
    • Create histograms and box plots
    • Build time series visualizations
    • Design multi-dimensional charts
  3. Style and Customize:

    • Apply color schemes and themes
    • Add labels, legends, and annotations
    • Format axes and gridlines
    • Customize tooltips and interactions
    • Ensure accessibility and readability
  4. Export and Embed:

    • Save as PNG, SVG, PDF
    • Generate interactive HTML charts
    • Embed in markdown reports
    • Create chart APIs
    • Support responsive design

Usage Examples

@chart-generator data.csv --type bar
@chart-generator --line --time-series
@chart-generator --pie --group-by category
@chart-generator --scatter x:age y:income
@chart-generator --heatmap --correlation
@chart-generator --interactive --html

Chart Types and Use Cases

When to Use Each Chart Type

Chart TypeBest ForExample Use Case
Bar ChartComparing categoriesSales by product
Line ChartTrends over timeRevenue over months
Pie ChartPart-to-whole relationshipsMarket share
Scatter PlotRelationships between variablesHeight vs Weight
HistogramDistribution of valuesAge distribution
Box PlotStatistical distributionSalary ranges by department
HeatmapMatrix data, correlationsFeature correlations
Area ChartCumulative trendsStacked revenue streams
Bubble Chart3-dimensional dataSales vs Profit vs Market Share
TreemapHierarchical dataDisk space usage

Python - Matplotlib

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

def create_bar_chart(data, x_col, y_col, title='Bar Chart', output='chart.png'):
    """
    Create a bar chart
    """
    plt.figure(figsize=(10, 6))

    if isinstance(data, pd.DataFrame):
        x = data[x_col]
        y = data[y_col]
    else:
        x = data['labels']
        y = data['values']

    bars = plt.bar(x, y, color='steelblue', alpha=0.8)

    # Add value labels on bars
    for bar in bars:
        height = bar.get_height()
        plt.text(bar.get_x() + bar.get_width()/2., height,
                f'{height:.1f}',
                ha='center', va='bottom')

    plt.title(title, fontsize=16, fontweight='bold')
    plt.xlabel(x_col if isinstance(data, pd.DataFrame) else 'Category', fontsize=12)
    plt.ylabel(y_col if isinstance(data, pd.DataFrame) else 'Value', fontsize=12)
    plt.xticks(rotation=45, ha='right')
    plt.grid(axis='y', alpha=0.3)
    plt.tight_layout()

    plt.savefig(output, dpi=300, bbox_inches='tight')
    plt.close()

    return output

def create_line_chart(data, x_col, y_col, title='Line Chart', output='chart.png'):
    """
    Create a line chart
    """
    plt.figure(figsize=(12, 6))

    if isinstance(data, pd.DataFrame):
        x = data[x_col]
        y = data[y_col]
    else:
        x = data['x']
        y = data['y']

    plt.plot(x, y, marker='o', linewidth=2, markersize=6, color='steelblue')

    # Add grid
    plt.grid(True, alpha=0.3)

    plt.title(title, fontsize=16, fontweight='bold')
    plt.xlabel(x_col if isinstance(data, pd.DataFrame) else 'X', fontsize=12)
    plt.ylabel(y_col if isinstance(data, pd.DataFrame) else 'Y', fontsize=12)
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()

    plt.savefig(output, dpi=300, bbox_inches='tight')
    plt.close()

    return output

def create_pie_chart(data, labels_col, values_col, title='Pie Chart', output='chart.png'):
    """
    Create a pie chart
    """
    plt.figure(figsize=(10, 8))

    if isinstance(data, pd.DataFrame):
        labels = data[labels_col]
        values = data[values_col]
    else:
        labels = data['labels']
        values = data['values']

    # Create color palette
    colors = plt.cm.Set3(np.linspace(0, 1, len(labels)))

    # Create pie chart
    wedges, texts, autotexts = plt.pie(
        values,
        labels=labels,
        autopct='%1.1f%%',
        startangle=90,
        colors=colors,
        explode=[0.05] * len(labels)  # Slightly separate slices
    )

    # Style percentage text
    for autotext in autotexts:
        autotext.set_color('white')
        autotext.set_fontweight('bold')
        autotext.set_fontsize(10)

    plt.title(title, fontsize=16, fontweight='bold')
    plt.axis('equal')
    plt.tight_layout()

    plt.savefig(output, dpi=300, bbox_inches='tight')
    plt.close()

    return output

def create_scatter_plot(data, x

...
Read full content

Repository Stats

Stars19
Forks4
LicenseMIT License