docling
Claude Code plugin for code review skills and verification workflows. Python, Go, React, FastAPI, BubbleTea, and AI frameworks (Pydantic AI, LangGraph, Vercel AI SDK).
15 stars3 forksUpdated Jan 24, 2026
npx skills add https://github.com/existential-birds/beagle --skill doclingSKILL.md
Docling Document Parser
Docling is a document parsing library that converts PDFs, Word documents, PowerPoint, images, and other formats into structured data with advanced layout understanding.
Quick Start
Basic document conversion:
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # URL, Path, or BytesIO
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())
Core Concepts
DocumentConverter
The main entry point for document conversion. Supports various input formats and conversion options.
from docling.document_converter import DocumentConverter
from docling.datamodel.base_models import InputFormat
from docling.document_converter import PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions
# Basic converter (all formats enabled)
converter = DocumentConverter()
# Restricted formats
converter = DocumentConverter(
allowed_formats=[InputFormat.PDF, InputFormat.DOCX]
)
# Custom pipeline options
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
ConversionResult
All conversion operations return a ConversionResult containing:
document: The parsedDoclingDocumentstatus:ConversionStatus.SUCCESS,PARTIAL_SUCCESS, orFAILUREerrors: List of errors encountered during conversioninput: Information about the source document
result = converter.convert("document.pdf")
if result.status == ConversionStatus.SUCCESS:
markdown = result.document.export_to_markdown()
html = result.document.export_to_html()
data = result.document.export_to_dict()
Supported Formats
Input Formats
- Documents: PDF, DOCX, PPTX, XLSX
- Markup: HTML, Markdown, AsciiDoc
- Data: CSV, JSON (Docling format)
- Images: PNG, JPEG, TIFF, BMP, WEBP
- Audio: WAV, MP3
- Video Text: WebVTT
- Schema-specific: USPTO XML, JATS XML, METS-GBS
Output Formats
- Markdown:
export_to_markdown()orsave_as_markdown() - HTML:
export_to_html()orsave_as_html() - JSON:
export_to_dict()orsave_as_json()(note: noexport_to_json()method) - Text:
export_to_text()orexport_to_markdown(strict_text=True)orsave_as_markdown(strict_text=True) - DocTags:
export_to_doctags()orsave_as_doctags()
Common Patterns
Single File Conversion
from docling.document_converter import DocumentConverter
converter = DocumentConverter()
result = converter.convert("document.pdf")
# Export to different formats
markdown = result.document.export_to_markdown()
html = result.document.export_to_html()
json_data = result.document.export_to_dict()
# Or save directly to file
result.document.save_as_markdown("output.md")
result.document.save_as_html("output.html")
result.document.save_as_json("output.json")
Batch Processing
See references/batch.md for details on convert_all().
URL Conversion
converter = DocumentConverter()
result = converter.convert("https://example.com/document.pdf")
Binary Stream Conversion
from io import BytesIO
from docling.datamodel.base_models import DocumentStream
with open("document.pdf", "rb") as f:
buf = BytesIO(f.read())
source = DocumentStream(name="document.pdf", stream=buf)
result = converter.convert(source)
Format-Specific Options
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
# Configure PDF-specific options
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.ocr_options.lang = ["en", "es"]
pipeline_options.do_table_structure = True
pipeline_options.generate_page_images = True
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
Resource Limits
converter = DocumentConverter()
# Limit file size (bytes) and page count
result = converter.convert(
"large_document.pdf",
max_file_size=20_971_520, # 20 MB
max_num_pages=100
)
Document Chunking
See references/chunking.md for RAG integration.
DoclingDocument Structure
The DoclingDocument is a Pydantic model representing parsed content:
# Access document structure
doc = result.document
# Content items (lists)
doc.texts # TextItem instances (paragraphs, headings, etc.)
doc.tables # TableItem instances
doc.pictures # PictureItem instances
doc.key_value_items # Key-value pairs
# Structure (tree nodes)
doc.body #
...
Repository Stats
Stars15
Forks3
LicenseMIT License