langgraph-implementation
Claude Code plugin for code review skills and verification workflows. Python, Go, React, FastAPI, BubbleTea, and AI frameworks (Pydantic AI, LangGraph, Vercel AI SDK).
15 stars3 forksUpdated Jan 24, 2026
npx skills add https://github.com/existential-birds/beagle --skill langgraph-implementationSKILL.md
LangGraph Implementation
Core Concepts
LangGraph builds stateful, multi-actor agent applications using a graph-based architecture:
- StateGraph: Builder class for defining graphs with shared state
- Nodes: Functions that read state and return partial updates
- Edges: Define execution flow (static or conditional)
- Channels: Internal state management (LastValue, BinaryOperatorAggregate)
- Checkpointer: Persistence for pause/resume capabilities
Essential Imports
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import MessagesState, add_messages
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.types import Command, Send, interrupt, RetryPolicy
from typing import Annotated
from typing_extensions import TypedDict
State Schema Patterns
Basic State with TypedDict
class State(TypedDict):
counter: int # LastValue - stores last value
messages: Annotated[list, operator.add] # Reducer - appends lists
items: Annotated[list, lambda a, b: a + [b] if b else a] # Custom reducer
MessagesState for Chat Applications
from langgraph.graph.message import MessagesState
class State(MessagesState):
# Inherits: messages: Annotated[list[AnyMessage], add_messages]
user_id: str
context: dict
Pydantic State (for validation)
from pydantic import BaseModel
class State(BaseModel):
messages: Annotated[list, add_messages]
validated_field: str # Pydantic validates on assignment
Building Graphs
Basic Pattern
builder = StateGraph(State)
# Add nodes - functions that take state, return partial updates
builder.add_node("process", process_fn)
builder.add_node("decide", decide_fn)
# Add edges
builder.add_edge(START, "process")
builder.add_edge("process", "decide")
builder.add_edge("decide", END)
# Compile
graph = builder.compile()
Node Function Signature
def my_node(state: State) -> dict:
"""Node receives full state, returns partial update."""
return {"counter": state["counter"] + 1}
# With config access
def my_node(state: State, config: RunnableConfig) -> dict:
thread_id = config["configurable"]["thread_id"]
return {"result": process(state, thread_id)}
# With Runtime context (v0.6+)
def my_node(state: State, runtime: Runtime[Context]) -> dict:
user_id = runtime.context.get("user_id")
return {"result": user_id}
Conditional Edges
from typing import Literal
def router(state: State) -> Literal["agent", "tools", "__end__"]:
last_msg = state["messages"][-1]
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
return "tools"
return END # or "__end__"
builder.add_conditional_edges("agent", router)
# With path_map for visualization
builder.add_conditional_edges(
"agent",
router,
path_map={"agent": "agent", "tools": "tools", "__end__": END}
)
Command Pattern (Dynamic Routing + State Update)
from langgraph.types import Command
def dynamic_node(state: State) -> Command[Literal["next", "__end__"]]:
if state["should_continue"]:
return Command(goto="next", update={"step": state["step"] + 1})
return Command(goto=END)
# Must declare destinations for visualization
builder.add_node("dynamic", dynamic_node, destinations=["next", END])
Send Pattern (Fan-out/Map-Reduce)
from langgraph.types import Send
def fan_out(state: State) -> list[Send]:
"""Route to multiple node instances with different inputs."""
return [Send("worker", {"item": item}) for item in state["items"]]
builder.add_conditional_edges(START, fan_out)
builder.add_edge("worker", "aggregate") # Workers converge
Checkpointing
Enable Persistence
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.checkpoint.sqlite import SqliteSaver # Development
from langgraph.checkpoint.postgres import PostgresSaver # Production
# In-memory (testing only)
graph = builder.compile(checkpointer=InMemorySaver())
# SQLite (development)
with SqliteSaver.from_conn_string("checkpoints.db") as checkpointer:
graph = builder.compile(checkpointer=checkpointer)
# Thread-based invocation
config = {"configurable": {"thread_id": "user-123"}}
result = graph.invoke({"messages": [...]}, config)
State Management
# Get current state
state = graph.get_state(config)
# Get state history
for state in graph.get_state_history(config):
print(state.values, state.next)
# Update state manually
graph.update_state(config, {"key": "new_value"}, as_node="node_name")
Human-in-the-Loop
Using interrupt()
from langgraph.types import interrupt, Command
def review_node(state: State) -> dict:
# Pause and surface value to client
human_input = interrupt({"question": "Please review", "data": state["draft"]})
return {"approved"
...
Repository Stats
Stars15
Forks3
LicenseMIT License