fl-sean03/agentic-science-worker
Autonomous AI agent for computational materials science research
npx skills add fl-sean03/agentic-science-workerREADME
Agentic Science Worker
An autonomous AI agent system for computational materials science research. Designed to work with multiple coding agents (Claude Code, Aider, OpenAI Codex, Cursor), this system enables AI to conduct scientific research like a PhD-level computational scientist.
Overview
The Agentic Science Worker can:
- Run molecular dynamics simulations (LAMMPS) with literature-sourced parameters
- Perform DFT calculations (Quantum ESPRESSO) for electronic structure
- Search scientific literature and extract methodology/parameters
- Query materials databases (Materials Project) for structures and properties
- Analyze results and compare with published values
- Execute on HPC clusters for large-scale computations
The agent operates autonomously: given a scientific question, it researches the methodology, finds parameters, runs simulations, verifies results against literature, and iterates until achieving physically reasonable results.
Architecture
┌─────────────────────────────────────────────────────────────┐
│ Coding Agent │
│ Claude Code │ Aider │ OpenAI Codex │ Cursor │
│ (AGENTS.md defines researcher behavior and methodology) │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Skills │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ LAMMPS │ │ QE │ │ HPC │ │ MLIP │ │
│ │ Skill │ │ Skill │ │ Skill │ │ Skill │ │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │Literature│ │Materials │ │ Data │ │
│ │ Search │ │ Database │ │ Analysis │ │
│ └──────────┘ └──────────┘ └──────────┘ │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ External Tools │
│ LAMMPS │ Quantum ESPRESSO │ Python │ HPC Cluster │ Web │
└─────────────────────────────────────────────────────────────┘
Supported Agents
| Agent | Status | Configuration |
|---|---|---|
| Claude Code | Full Support | AGENTS.md, .claude/ |
| Aider | Full Support | AGENTS.md, configs/aider/ |
| OpenAI Codex | Planned | AGENTS.md |
| Cursor | Full Support | AGENTS.md, .cursorrules |
All agents read AGENTS.md (the industry standard) as their primary context file.
Quick Start
Prerequisites
- A supported coding agent:
- Claude Code CLI with subscription, OR
- Aider with API key, OR
- Cursor
- Python 3.10+
- LAMMPS (with GPU support recommended)
- Quantum ESPRESSO (optional, for DFT)
- Materials Project API key
Installation
- Clone the repository:
git clone https://github.com/yourusername/agentic-science-worker.git
cd agentic-science-worker
- Copy and configure settings:
cp config.example.yaml config.yaml
cp .claude/settings.json.example .claude/settings.json
cp .mcp.json.example .mcp.json
- Edit configuration files with your paths and API keys:
# config.yaml
binaries:
lammps: "/path/to/your/lammps/bin/lmp"
qe_cpu: "/path/to/qe/bin"
api_keys:
materials_project: "YOUR_MP_API_KEY"
- Verify infrastructure:
cd benchmarks/evaluation
python harness.py --verify
Running the Agent
With Claude Code:
cd /path/to/agentic-science-worker
claude
With Aider:
cd /path/to/agentic-science-worker
aider --read AGENTS.md
With Cursor:
cursor .
# Uses AGENTS.md and .cursorrules automatically
Example prompts (any agent):
Calculate the self-diffusion coefficient of liquid argon at 94K
Find the lattice constant of copper using the Mishin EAM potential
Calculate the band structure of silicon
Benchmark Suite
The project includes a comprehensive benchmark suite to evaluate agent capabilities:
Tiers
| Tier | Category | Description |
|---|---|---|
| 1-2 | Basic | Single-tool tasks (LAMMPS, QE, literature search) |
| 3-4 | Advanced | Multi-step workflows, paper reproduction |
| 5-7 | HPC | Remote cluster execution, async jobs, error recovery |
| 8-10 | ML/AI | Machine learning potentials, autonomous research |
| 11 | Frontier | HPC + ML hybrid |
...