effect-ai-language-model
from front-depiction/claude-setup
Reusable Claude Code configuration for Effect TypeScript projects with specialized agents and skills
10 stars4 forksUpdated Jan 19, 2026
npx skills add https://github.com/front-depiction/claude-setup --skill effect-ai-language-modelSKILL.md
Effect AI Language Model
Pattern guide for working with the LanguageModel service from @effect/ai for type-safe LLM interactions with Effect's functional patterns.
Import Patterns
CRITICAL: Always use namespace imports:
import * as LanguageModel from "@effect/ai/LanguageModel"
import * as Prompt from "@effect/ai/Prompt"
import * as Response from "@effect/ai/Response"
import * as Toolkit from "@effect/ai/Toolkit"
import * as Tool from "@effect/ai/Tool"
import * as Effect from "effect/Effect"
import * as Stream from "effect/Stream"
import * as Schema from "effect/Schema"
When to Use This Skill
- Generating text completions from language models
- Extracting structured data with schema validation
- Real-time streaming responses for chat interfaces
- Tool calling and function execution
- Multi-turn conversations with history
- Switching between different AI providers
Service Interface
LanguageModel :: Service
-- Core operations
generateText :: Options → Effect GenerateTextResponse E R
generateObject :: Options → Schema A → Effect (GenerateObjectResponse A) E R
streamText :: Options → Stream StreamPart E R
-- Service as dependency
LanguageModel ∈ R → Effect.gen(function*() {
const model = yield* LanguageModel
const response = yield* model.generateText(options)
})
generateText Pattern
Basic text generation with optional tool calling:
import * as LanguageModel from "@effect/ai/LanguageModel"
import * as Effect from "effect/Effect"
// Simple text generation
const simple = LanguageModel.generateText({
prompt: "Explain quantum computing"
})
// With system prompt and conversation history
const withHistory = LanguageModel.generateText({
prompt: [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: [{ type: "text", text: "Hello!" }] }
]
})
// With toolkit for tool calling
const withTools = LanguageModel.generateText({
prompt: "What's the weather in SF?",
toolkit: weatherToolkit,
toolChoice: "auto" // "none" | "required" | { tool: "name" } | { oneOf: [...] }
})
// Parallel tool call execution
const withConcurrency = LanguageModel.generateText({
prompt: "Search multiple sources",
toolkit: searchToolkit,
concurrency: "unbounded" // or number for limited parallelism
})
// Disable automatic tool call resolution
const manualTools = LanguageModel.generateText({
prompt: "Search for X",
toolkit: searchToolkit,
disableToolCallResolution: true // Get tool calls without executing
})
Response Accessors
const response = yield* LanguageModel.generateText({ prompt: "..." })
response.text // string - concatenated text content
response.toolCalls // Array<ToolCallParts> - tool invocations
response.toolResults // Array<ToolResultParts> - tool outputs
response.finishReason // "stop" | "length" | "tool-calls" | "content-filter" | "unknown"
response.usage // { inputTokens, outputTokens, totalTokens, reasoningTokens?, cachedInputTokens? }
response.reasoning // Array<ReasoningPart> - reasoning steps (when model provides extended thinking)
response.reasoningText // string | undefined - concatenated reasoning content
generateObject Pattern (Structured Output)
Force schema-validated output from the model:
import * as LanguageModel from "@effect/ai/LanguageModel"
import * as Schema from "effect/Schema"
import * as Effect from "effect/Effect"
// Define output schema
const ContactSchema = Schema.Struct({
name: Schema.String,
email: Schema.String,
phone: Schema.optional(Schema.String)
})
// Generate structured output
const extractContact = LanguageModel.generateObject({
prompt: "Extract: John Doe, john@example.com, 555-1234",
schema: ContactSchema,
objectName: "contact" // Optional, aids model understanding
})
// Usage
const program = Effect.gen(function* () {
const response = yield* extractContact
response.value // { name: "John Doe", email: "john@example.com", phone: "555-1234" }
response.text // Raw generated text (JSON)
response.usage // Token usage stats
return response.value
})
Schema-driven ADT extraction
const EventType = Schema.TaggedStruct("EventType", {
_tag: Schema.Literal("meeting", "deadline", "reminder"),
title: Schema.String,
date: Schema.String
})
const extractEvent = LanguageModel.generateObject({
prompt: "Parse: Team meeting on March 15th",
schema: EventType
})
streamText Pattern
Real-time streaming text generation:
import * as LanguageModel from "@effect/ai/LanguageModel"
import * as Stream from "effect/Stream"
import * as Effect from "effect/Effect"
import * as Console from "effect/Console"
// Basic streaming
const streamStory = LanguageModel.streamText({
prompt: "Write a story about space exploration"
})
// Process stream parts
const program = streamStory.pipe(
Stream.runForEach((part) => {
if (par
...
Repository Stats
Stars10
Forks4