typescript-mcp

from jezweb/claude-skills

Skills for Claude Code CLI such as full stack dev Cloudflare, React, Tailwind v4, and AI integrations.

213 stars24 forksUpdated Jan 26, 2026
npx skills add https://github.com/jezweb/claude-skills --skill typescript-mcp

SKILL.md

TypeScript MCP on Cloudflare Workers

Last Updated: 2026-01-21 Versions: @modelcontextprotocol/sdk@1.25.3, hono@4.11.3, zod@4.3.5 Spec Version: 2025-11-25


Quick Start

npm install @modelcontextprotocol/sdk@latest hono zod
npm install -D @cloudflare/workers-types wrangler typescript

Transport Recommendation: Use StreamableHTTPServerTransport for production. SSE transport is deprecated and maintained for backwards compatibility only. Streamable HTTP provides better error recovery, bidirectional communication, and simplified deployment.

Basic MCP Server:

import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { StreamableHTTPServerTransport } from '@modelcontextprotocol/sdk/server/streamableHttp.js';
import { Hono } from 'hono';
import { z } from 'zod';

const server = new McpServer({ name: 'my-mcp-server', version: '1.0.0' });

server.registerTool(
  'echo',
  {
    description: 'Echoes back input',
    inputSchema: z.object({ text: z.string() })
  },
  async ({ text }) => ({ content: [{ type: 'text', text }] })
);

const app = new Hono();

app.post('/mcp', async (c) => {
  const transport = new StreamableHTTPServerTransport({
    sessionIdGenerator: undefined,
    enableJsonResponse: true
  });

  // CRITICAL: Set error handler to catch transport errors
  transport.onerror = (error) => {
    console.error('MCP transport error:', error);
  };

  // CRITICAL: Close transport to prevent memory leaks
  c.res.raw.on('close', () => transport.close());

  await server.connect(transport);
  await transport.handleRequest(c.req.raw, c.res.raw, await c.req.json());
  return c.body(null);
});

export default app; // CRITICAL: Direct export, not { fetch: app.fetch }

Deploy: wrangler deploy


Authentication

API Key (KV-based):

app.use('/mcp', async (c, next) => {
  const apiKey = c.req.header('Authorization')?.replace('Bearer ', '');
  const isValid = await c.env.MCP_API_KEYS.get(`key:${apiKey}`);
  if (!isValid) return c.json({ error: 'Unauthorized' }, 403);
  await next();
});

Cloudflare Zero Trust:

const jwt = c.req.header('Cf-Access-Jwt-Assertion');
const payload = await verifyJWT(jwt, c.env.CF_ACCESS_TEAM_DOMAIN);

Tasks (v1.24.0+)

Tasks enable long-running operations that return a handle for polling results later. Useful for expensive computations, batch processing, or operations that may need input.

Task States: working → input_required → completed / failed / cancelled

Server Capability Declaration:

const server = new McpServer({
  name: 'my-server',
  version: '1.0.0',
  capabilities: {
    tasks: {
      list: {},
      cancel: {},
      requests: {
        tools: { call: {} }
      }
    }
  }
});

Tool with Task Support:

server.registerTool(
  'long-running-analysis',
  {
    description: 'Analyze large dataset',
    inputSchema: z.object({ datasetId: z.string() }),
    execution: { taskSupport: 'optional' }  // 'forbidden' | 'optional' | 'required'
  },
  async ({ datasetId }, extra) => {
    // If invoked as task, extra.task contains taskId
    const result = await performAnalysis(datasetId);
    return { content: [{ type: 'text', text: JSON.stringify(result) }] };
  }
);

Client Task Request:

{
  "method": "tools/call",
  "params": {
    "name": "long-running-analysis",
    "arguments": { "datasetId": "abc123" },
    "task": { "ttl": 60000 }
  }
}

Task Lifecycle:

  1. Client sends request with task param → receives taskId
  2. Client polls via tasks/get with taskId
  3. When status is completed, client calls tasks/result to get output
  4. Optional: Client can tasks/cancel to abort

šŸ“š Spec: https://modelcontextprotocol.io/specification/2025-11-25/basic/utilities/tasks


Sampling with Tools (v1.24.0+)

Servers can now include tool definitions in sampling requests, enabling server-side agent loops.

Use Case: Server needs to orchestrate multi-step reasoning using LLM + tools without custom frameworks.

// Server initiates sampling with tools available
const result = await server.requestSampling({
  messages: [{ role: 'user', content: 'Analyze this data and fetch more if needed' }],
  maxTokens: 4096,
  tools: [
    {
      name: 'fetch_data',
      description: 'Fetch additional data from API',
      inputSchema: { type: 'object', properties: { query: { type: 'string' } } }
    }
  ]
});

// Handle tool calls in response
if (result.content[0].type === 'tool_use') {
  const toolResult = await executeLocalTool(result.content[0]);
  // Continue conversation with tool result...
}

Key Points:

  • Server-side agentic behavior as first-class MCP feature
  • Standard MCP primitives (no custom frameworks)
  • Tool definitions follow same schema as tools/list

šŸ“š Spec: SEP-1577


Cloudflare Service Tools

D1 Database:


...
Read full content

Repository Stats

Stars213
Forks24
LicenseMIT License