ai-app
from laguagu/claude-code-nextjs-skills
Claude Code skills for AI apps • Next.js 16 • AI SDK 6 • pgvector • bun • Ralph Loop
6 stars0 forksUpdated Jan 26, 2026
npx skills add https://github.com/laguagu/claude-code-nextjs-skills --skill ai-appSKILL.md
AI App Generator
Build full-stack AI applications with Next.js, AI SDK, and ai-elements.
Quick Start
1. Scaffold Project
bunx --bun shadcn@latest create --preset "https://ui.shadcn.com/init?base=radix&style=vega&baseColor=zinc&iconLibrary=lucide&font=inter" --template next my-ai-app
cd my-ai-app
2. Install Dependencies
bun add ai @ai-sdk/react @ai-sdk/anthropic zod
bunx --bun ai-elements@latest
3. Configure Environment
# .env.local - Choose your provider
ANTHROPIC_API_KEY=sk-ant-...
# OPENAI_API_KEY=sk-...
# GOOGLE_GENERATIVE_AI_API_KEY=...
4. Generate Application
Based on user requirements, generate:
- Chatbot: See references/chatbot.md
- Agent Dashboard: See references/agent-dashboard.md
- Custom: Combine patterns as needed
Application Types
Chatbot
Simple conversational AI with streaming responses.
| Feature | Implementation |
|---|---|
| Chat UI | Conversation + Message + PromptInput |
| API | streamText + toUIMessageStreamResponse |
| Extras | Reasoning, Sources, File attachments |
Agent Dashboard
Multi-agent interface with tool visualization.
| Feature | Implementation |
|---|---|
| Agents | ToolLoopAgent with tools |
| UI | Dashboard layout + Tool components |
| API | createAgentUIStreamResponse |
| Extras | Status monitoring, tool approval |
Custom AI App
Mix and match based on user needs:
- Web search chatbot
- Code generation assistant
- Document analyzer
- Multi-modal chat
Project Structure
my-ai-app/
├── app/
│ ├── page.tsx # Main UI
│ ├── layout.tsx # Root layout
│ ├── globals.css # Theme
│ └── api/
│ └── chat/
│ └── route.ts # AI endpoint
├── components/
│ ├── ai-elements/ # AI Elements components
│ ├── ui/ # shadcn/ui components
│ └── chat.tsx # Chat component (if extracted)
├── lib/
│ ├── utils.ts # Utilities
│ └── ai.ts # AI configuration (optional)
├── ai/ # Agent definitions (if needed)
│ └── assistant.ts
└── .env.local # API keys
See references/project-structure.md for details.
Core Patterns
API Route
// app/api/chat/route.ts
import { streamText, UIMessage, convertToModelMessages } from 'ai';
import { anthropic } from '@ai-sdk/anthropic';
export const maxDuration = 30;
export async function POST(req: Request) {
const { messages }: { messages: UIMessage[] } = await req.json();
const result = streamText({
model: anthropic('claude-sonnet-4-5'),
messages: convertToModelMessages(messages),
system: 'You are a helpful assistant.',
});
return result.toUIMessageStreamResponse({
sendSources: true,
sendReasoning: true,
});
}
Chat Page
// app/page.tsx
'use client';
import { useChat } from '@ai-sdk/react';
import {
Conversation,
ConversationContent,
ConversationScrollButton,
} from '@/components/ai-elements/conversation';
import {
Message,
MessageContent,
MessageResponse,
} from '@/components/ai-elements/message';
import {
PromptInput,
PromptInputBody,
PromptInputTextarea,
PromptInputFooter,
PromptInputSubmit,
type PromptInputMessage,
} from '@/components/ai-elements/prompt-input';
import { Loader } from '@/components/ai-elements/loader';
import { useState } from 'react';
export default function ChatPage() {
const [input, setInput] = useState('');
const { messages, sendMessage, status } = useChat();
const handleSubmit = (message: PromptInputMessage) => {
if (!message.text.trim()) return;
sendMessage({ text: message.text, files: message.files });
setInput('');
};
return (
<div className="flex h-screen flex-col p-4">
<Conversation className="flex-1">
<ConversationContent>
{messages.map((message) => (
<div key={message.id}>
{message.parts.map((part, i) => {
if (part.type === 'text') {
return (
<Message key={i} from={message.role}>
<MessageContent>
<MessageResponse>{part.text}</MessageResponse>
</MessageContent>
</Message>
);
}
return null;
})}
</div>
))}
{status === 'submitted' && <Loader />}
</ConversationContent>
<ConversationScrollButton />
</Conversation>
<PromptInput onSubmit={handleSubmit} className="mt-4">
<PromptInputBody>
<PromptInputTextarea
value={input}
onChange={(e) => setInput(e.target.value)}
/>
</PromptInputBody>
<PromptInputFooter
...
Repository Stats
Stars6
Forks0
LicenseMIT License