liangdabiao/claude-data-analysis-ultra-main
让小白都可以一键进行数据分析,搞互联网的,搞电商的,搞各种各样的,那么其实就会用到 互联网的数据分析, 例如互联网会关心 拉新,留存,促活,推荐,转化,A/B test, 用户分析 等等很多有用的数据分析。 命令就是“/do-more”.
npx skills add liangdabiao/claude-data-analysis-ultra-mainREADME
Claude Data Analysis Assistant
A modern, intelligent data analysis platform built with Claude Code's sub-agents, slash-commands, skills, and hooks. Transform your data analysis workflow with AI-powered assistance and specialized analysis tools.
简单的一句话: 2个命令, /do-all 常规数据分析 ; /do-more 互联网数据分析 。 而分析数据是放在 /data_storage 。就这么简单,用起来吧!
注意: 下载项目下来,分析数据是放在 /data_storage [删去原来的demo数据] ,你需要先删除 complete_analysis 和 do_more_analysis 这两个文件夹。我这里放着是给你参考最终的分析结果,作为例子。
🚀 Quick Start
1. Set Up Your Data
Place your dataset in the data_storage/ directory:
cp your_data.csv ./data_storage/
2. Start Analysis
Use intuitive slash commands to analyze your data:
# Complete interactive workflow with human feedback checkpoints
/do-all
# ⭐ NEW: Automatic multi-skill analysis
/do-more
# Basic exploratory analysis
/analyze user_behavior_sample.csv exploratory
# Create visualizations
/visualize user_behavior_sample.csv all
# Generate analysis code
/generate python data-cleaning
# Create comprehensive report
/report user_behavior_sample.csv complete markdown
🎯 Key Features
⭐ /do-more vs /do-all: Which Should You Use?
/do-more: Automatic Multi-Skill Analysis
Best for: Quick, automated analysis without configuration
/do-more # No parameters needed!
What it does:
- ✅ Automatically scans
data_storage/directory - ✅ Identifies data types (e-commerce, user behavior, etc.)
- ✅ Intelligently matches 7+ relevant skills
- ✅ Executes skills in optimal order
- ✅ Generates comprehensive HTML report
- ✅ No human intervention required
- ✅ Fast execution (2-5 minutes)
Output: do_more_analysis/integrated_results/Comprehensive_Analysis_Report.html
/do-all: Complete Interactive Analysis Workflow
Best for: Thorough analysis with human oversight and feedback
/do-all
What it does:
- ✅ Reads data from
data_storage/(no parameters needed!) - ✅ 6-stage workflow with quality checks
- ✅ 3 Human feedback checkpoints at critical stages
- ✅ Interactive hypothesis generation
- ✅ Custom code generation
- ✅ Comprehensive documentation
- ✅ Multiple output formats (HTML, PDF, Markdown, DOCX)
Workflow Stages:
- Data Quality Assessment → ⚠️ [human checkpoint #1] - Confirm data quality
- Exploratory Analysis - Statistical summaries, patterns, trends
- Hypothesis Generation → ⚠️ [human checkpoint #2] - Review research directions
- Visualization → ⚠️ [human checkpoint #3] - Approve visualization strategy
- Code Generation - Reproducible analysis pipeline
- Report Generation - Comprehensive final report
Output Directory:
complete_analysis/
├── data_quality_report/ # Stage 1 output
├── exploratory_analysis/ # Stage 2 output
├── hypothesis_reports/ # Stage 3 output
├── visualizations/ # Stage 4 output
├── generated_code/ # Stage 5 output
├── final_report/ # Stage 6 output
└── workflow_log/ # Execution logs
Execution Time: 10-30 minutes (depends on data size)
Comparison Summary
| Feature | /do-more | /do-all |
|---|---|---|
| Data Source | Auto-scans data_storage/ | Reads from data_storage/ |
| Parameters | None required | None |
| Human Feedback | No | Yes (3 checkpoints) |
| Execution Time | 2-5 minutes | 10-30 minutes |
| Skills Used | 7+ auto-selected | Complete workflow (no skills) |
| Output Format | HTML report | Multi-format (HTML/PDF/MD/DOCX) |
| Code Generation | No | Yes (complete pipeline) |
| Analysis Stages | Integrated execution | 6 separate stages |
| Interactive | No | Yes (at checkpoints) |
| Report Detail | Comprehensive | Extensive + technical |
| Best For | Quick insights | Thorough analysis |
| Customization | Automatic | Interactive |
Specialized Analysis Skills
12 domain-specific skills for expert-level analysis:
Customer Analysis:
rfm-customer-segmentation- Customer value segmentationltv-predictor- Lifetime value predictionretention-analysis- Customer retention and churnuser-profiling-analysis- User behavior profiling
Marketing Analysis:
attribution-analysis-modeling- Marketing attributiongrowth-model-analyzer- Growth hacking analysisab-testing-analyzer- A/B test validationfunnel-analysis- Conversion funnels
Data Analysis:
data-exploration-visualization- Automated EDAregression-analysis-modeling- Predictive modelingcontent-analysis- Text and NLP analysisrecommender-system- Recommendation engines
Intelligent Sub-Agents
- data-explorer: Expert statistical analysis and pattern discovery
- visualization-specialist: Beautiful, insightful charts and graphs
- code-generator: Production-ready analysis code
- report-writer: Comprehensive analysis reports
- quality-assurance: Data validation and quality contr
...