liangdabiao/claude-data-analysis-ultra-main

让小白都可以一键进行数据分析,搞互联网的,搞电商的,搞各种各样的,那么其实就会用到 互联网的数据分析, 例如互联网会关心 拉新,留存,促活,推荐,转化,A/B test, 用户分析 等等很多有用的数据分析。 命令就是“/do-more”.

122 stars22 forksUpdated Dec 24, 2025
npx skills add liangdabiao/claude-data-analysis-ultra-main

README

Claude Data Analysis Assistant

A modern, intelligent data analysis platform built with Claude Code's sub-agents, slash-commands, skills, and hooks. Transform your data analysis workflow with AI-powered assistance and specialized analysis tools.

简单的一句话: 2个命令, /do-all 常规数据分析 ; /do-more 互联网数据分析 。 而分析数据是放在 /data_storage 。就这么简单,用起来吧!

注意: 下载项目下来,分析数据是放在 /data_storage [删去原来的demo数据] ,你需要先删除 complete_analysis 和 do_more_analysis 这两个文件夹。我这里放着是给你参考最终的分析结果,作为例子。

🚀 Quick Start

1. Set Up Your Data

Place your dataset in the data_storage/ directory:

cp your_data.csv ./data_storage/

2. Start Analysis

Use intuitive slash commands to analyze your data:

# Complete interactive workflow with human feedback checkpoints
/do-all

# ⭐ NEW: Automatic multi-skill analysis
/do-more

# Basic exploratory analysis
/analyze user_behavior_sample.csv exploratory

# Create visualizations
/visualize user_behavior_sample.csv all

# Generate analysis code
/generate python data-cleaning

# Create comprehensive report
/report user_behavior_sample.csv complete markdown


🎯 Key Features

⭐ /do-more vs /do-all: Which Should You Use?

/do-more: Automatic Multi-Skill Analysis

Best for: Quick, automated analysis without configuration

/do-more  # No parameters needed!

What it does:

  • ✅ Automatically scans data_storage/ directory
  • ✅ Identifies data types (e-commerce, user behavior, etc.)
  • ✅ Intelligently matches 7+ relevant skills
  • ✅ Executes skills in optimal order
  • ✅ Generates comprehensive HTML report
  • ✅ No human intervention required
  • ✅ Fast execution (2-5 minutes)

Output: do_more_analysis/integrated_results/Comprehensive_Analysis_Report.html


/do-all: Complete Interactive Analysis Workflow

Best for: Thorough analysis with human oversight and feedback

/do-all

What it does:

  • ✅ Reads data from data_storage/ (no parameters needed!)
  • ✅ 6-stage workflow with quality checks
  • 3 Human feedback checkpoints at critical stages
  • ✅ Interactive hypothesis generation
  • ✅ Custom code generation
  • ✅ Comprehensive documentation
  • ✅ Multiple output formats (HTML, PDF, Markdown, DOCX)

Workflow Stages:

  1. Data Quality Assessment → ⚠️ [human checkpoint #1] - Confirm data quality
  2. Exploratory Analysis - Statistical summaries, patterns, trends
  3. Hypothesis Generation → ⚠️ [human checkpoint #2] - Review research directions
  4. Visualization → ⚠️ [human checkpoint #3] - Approve visualization strategy
  5. Code Generation - Reproducible analysis pipeline
  6. Report Generation - Comprehensive final report

Output Directory:

complete_analysis/
├── data_quality_report/          # Stage 1 output
├── exploratory_analysis/         # Stage 2 output
├── hypothesis_reports/           # Stage 3 output
├── visualizations/               # Stage 4 output
├── generated_code/               # Stage 5 output
├── final_report/                 # Stage 6 output
└── workflow_log/                 # Execution logs

Execution Time: 10-30 minutes (depends on data size)


Comparison Summary

Feature/do-more/do-all
Data SourceAuto-scans data_storage/Reads from data_storage/
ParametersNone requiredNone
Human FeedbackNoYes (3 checkpoints)
Execution Time2-5 minutes10-30 minutes
Skills Used7+ auto-selectedComplete workflow (no skills)
Output FormatHTML reportMulti-format (HTML/PDF/MD/DOCX)
Code GenerationNoYes (complete pipeline)
Analysis StagesIntegrated execution6 separate stages
InteractiveNoYes (at checkpoints)
Report DetailComprehensiveExtensive + technical
Best ForQuick insightsThorough analysis
CustomizationAutomaticInteractive

Specialized Analysis Skills

12 domain-specific skills for expert-level analysis:

Customer Analysis:

  • rfm-customer-segmentation - Customer value segmentation
  • ltv-predictor - Lifetime value prediction
  • retention-analysis - Customer retention and churn
  • user-profiling-analysis - User behavior profiling

Marketing Analysis:

  • attribution-analysis-modeling - Marketing attribution
  • growth-model-analyzer - Growth hacking analysis
  • ab-testing-analyzer - A/B test validation
  • funnel-analysis - Conversion funnels

Data Analysis:

  • data-exploration-visualization - Automated EDA
  • regression-analysis-modeling - Predictive modeling
  • content-analysis - Text and NLP analysis
  • recommender-system - Recommendation engines

Intelligent Sub-Agents

  • data-explorer: Expert statistical analysis and pattern discovery
  • visualization-specialist: Beautiful, insightful charts and graphs
  • code-generator: Production-ready analysis code
  • report-writer: Comprehensive analysis reports
  • quality-assurance: Data validation and quality contr

...

Read full README

Publisher

liangdabiaoliangdabiao

Statistics

Stars122
Forks22
Open Issues0
CreatedDec 24, 2025