qredence/agentic-fleet
Adaptive Agentic AI Reasoning using Microsoft Agent Framework -- Join the Discord for suggestion or support ! https://discord.gg/ebgy7gtZHK
90 stars10 forksUpdated Jan 26, 2026
npx skills add qredence/agentic-fleetREADME
AgenticFleet
Self-optimizing multi-agent orchestration powered by DSPy + Microsoft Agent Framework.
Project Name and Description
AgenticFleet is a production-ready multi-agent orchestration runtime that routes tasks to specialized agents through a five-phase pipeline (analysis → routing → execution → progress → quality). It combines DSPy for structured reasoning with the Microsoft Agent Framework for reliable execution, streaming rich events to both CLI and web clients.
🛠️ Technology Stack
- Backend: Python 3.12 / 3.13, FastAPI, Typer CLI, DSPy, Microsoft Agent Framework (Magentic Fleet pattern), Pydantic v2
- Package Manager: uv (Python), npm (Frontend)
- Orchestration & Tools: ToolRegistry adapters (Tavily search, browser automation, code execution, MCP), offline-compiled DSPy modules
- Frontend: React 19, TypeScript, Vite, Tailwind CSS, Radix UI, Shadcn UI, Lucide Icons; real-time SSE/WebSocket streaming
- Infrastructure & Storage: Azure Cosmos DB (primary store), SQLite/local persistence, Docker + Docker Compose
- Observability & Evaluation: OpenTelemetry (Jaeger, Azure Monitor), Azure AI Evaluation, Langfuse; retries via Tenacity; async concurrency with AnyIO/Asyncer
📋 Requirements
- Python: 3.12 or 3.13
- Dependency Manager: uv
- Node.js: 18+ (for the frontend)
- API Keys: OpenAI API Key (required), Tavily API Key (optional, for web search)
- Optional: Docker + Docker Compose, Azure credentials for Cosmos/monitoring
🚀 Getting Started
Installation
# Clone the repository
git clone https://github.com/Qredence/agentic-fleet.git
cd agentic-fleet
# Full development setup (Python + Frontend + Pre-commit)
make dev-setup
# Or individual steps:
# make install # Python deps via uv
# make frontend-install # Frontend deps via npm
# Configure environment
cp .env.example .env
# Set OPENAI_API_KEY and other variables in .env
Run Commands
# Full stack development (backend + frontend)
make dev
# Backend only (port 8000)
make backend
# Frontend only (port 5173)
make frontend-dev
# Interactive CLI console
make run
# Single task via CLI
uv run agentic-fleet run -m "Research the latest advances in AI agents" --verbose
📜 Scripts
The project uses a Makefile to centralize development commands:
| Command | Description |
|---|---|
make install | Install/sync Python dependencies via uv |
make dev-setup | Full development setup (install + frontend + pre-commit) |
make dev | Run backend + frontend together (full stack) |
make backend | Run backend only (port 8000) |
make frontend-dev | Run frontend only (port 5173) |
make test | Run backend tests (fast) |
make test-all | Run all tests (backend + frontend) |
make check | Quick quality check (lint + type-check) |
make qa | Full QA suite (lint + format + type + all tests) |
make format | Format backend code with Ruff |
make lint | Run Ruff linter on backend |
make type-check | Run ty type checker |
make clear-cache | Clear compiled DSPy cache |
make tracing-start | Start OpenTelemetry collector + Jaeger UI |
...