ruvnet/claude-flow

🌊 The leading agent orchestration platform for Claude. Deploy intelligent multi-agent swarms, coordinate autonomous workflows, and build conversational AI systems. Features enterprise-grade architecture, distributed swarm intelligence, RAG integration, and native Claude Code support via MCP protocol. Ranked #1 in agent-based frameworks.

13K stars1.6K forksUpdated Jan 25, 2026
npx skills add ruvnet/claude-flow

README

🌊 Claude-Flow v3: Enterprise AI Orchestration Platform

Claude-Flow Banner

Star on GitHub Monthly Downloads Total Downloads ruv.io Agentics Foundation Claude Code MIT License

Follow @ruv LinkedIn YouTube

Production-ready multi-agent AI orchestration for Claude Code

Deploy 60+ specialized agents in coordinated swarms with self-learning capabilities, fault-tolerant consensus, and enterprise-grade security.

Getting into the Flow

Claude-Flow is a comprehensive AI agent orchestration framework that transforms Claude Code into a powerful multi-agent development platform. It enables teams to deploy, coordinate, and optimize specialized AI agents working together on complex software engineering tasks.

Self-Learning/Self-Optimizing Agent Architecture

User β†’ Claude-Flow (CLI/MCP) β†’ Router β†’ Swarm β†’ Agents β†’ Memory β†’ LLM Providers
                       ↑                          ↓
                       └──── Learning Loop β†β”€β”€β”€β”€β”€β”€β”˜
πŸ“ Expanded Architecture β€” Full system diagram with RuVector intelligence
flowchart TB
    subgraph USER["πŸ‘€ User Layer"]
        U[User]
    end

    subgraph ENTRY["πŸšͺ Entry Layer"]
        CLI[CLI / MCP Server]
        AID[AIDefence Security]
    end

    subgraph ROUTING["🧭 Routing Layer"]
        QL[Q-Learning Router]
        MOE[MoE - 8 Experts]
        SK[Skills - 42+]
        HK[Hooks - 17]
    end

    subgraph SWARM["🐝 Swarm Coordination"]
        TOPO[Topologies<br/>mesh/hier/ring/star]
        CONS[Consensus<br/>Raft/BFT/Gossip/CRDT]
        CLM[Claims<br/>Human-Agent Coord]
    end

    subgraph AGENTS["πŸ€– 60+ Agents"]
        AG1[coder]
        AG2[tester]
        AG3[reviewer]
        AG4[architect]
        AG5[security]
        AG6[...]
    end

    subgraph RESOURCES["πŸ“¦ Resources"]
        MEM[(Memory<br/>AgentDB)]
        PROV[Providers<br/>Claude/GPT/Gemini/Ollama]
        WORK[Workers - 12<br/>ultralearn/audit/optimize]
    end

    subgraph RUVECTOR["🧠 RuVector Intelligence Layer"]
        direction TB
        subgraph ROW1[" "]
            SONA[SONA<br/>Self-Optimize<br/>&lt;0.05ms]
            EWC[EWC++<br/>No Forgetting]
            FLASH[Flash Attention<br/>2.49-7.47x]
        end
        subgraph ROW2[" "]
            HNSW[HNSW<br/>150x-12,500x faster]
            RB[ReasoningBank<br/>Pattern Store]
            HYP[Hyperbolic<br/>PoincarΓ©]
        end
        subgraph ROW3[" "]
            LORA[LoRA/Micro<br/>128x compress]
            QUANT[Int8 Quant<br/>3.92x memory]
            RL[9 RL Algos<br/>Q/SARSA/PPO/DQN]
        end
    end

    subgraph LEARNING["πŸ”„ Learning Loop"]
        L1[RETRIEVE] --> L2[JUDGE] --> L3[DISTILL] --> L4[CONSOLIDATE] --> L5[ROUTE]
    end

    U --> CLI
    CLI --> AID
    AID --> QL & MOE & SK & HK
    QL & MOE & SK & HK --> TOPO & CONS & CLM
    TOPO & CONS & CLM --> AG1 & AG2 & AG3 & AG4 & AG5 & AG6
    AG1 & AG2 & AG3 & AG4 & AG5 & AG6 --> MEM & PROV & WORK
    MEM --> SONA & EWC & FLASH
    SONA & EWC & FLASH --> HNSW & RB & HYP
    HNSW & RB & HYP --> LORA & QUANT & RL
    LORA & QUANT & RL --> L1
    L5 -.->|loops back| QL

    style RUVECTOR

...
Read full README