cc-history

from solatis/claude-config

My claude code customizations / config.

536 stars94 forksUpdated Jan 16, 2026
npx skills add https://github.com/solatis/claude-config --skill cc-history

SKILL.md

Claude Code History Analysis

Reference documentation for querying and analyzing Claude Code's conversation history. Use shell commands and jq to extract information from JSONL conversation files.

Directory Structure

~/.claude/projects/{encoded-path}/
  |-- {session-uuid}.jsonl          # Main conversation
  |-- {session-uuid}/
      |-- subagents/
      |   |-- agent-{hash}.jsonl    # Subagent conversations
      |-- tool-results/             # Large tool outputs

Project Path Resolution

Convert working directory to project directory:

PROJECT_DIR="~/.claude/projects/$(echo "$PWD" | sed 's|^/|-|; s|/\.|--|g; s|/|-|g')"

Encoding rules:

  • Leading / becomes -
  • Regular / becomes -
  • /. (hidden directory) becomes --

Examples:

  • /Users/bill/.claude -> -Users-bill--claude
  • /Users/bill/git/myproject -> -Users-bill-git-myproject

Message Types

TypeDescription
userUser input messages
assistantModel responses (thinking, tool_use, text)
systemSystem messages
queue-operationBackground task notifications (subagent done)

Message Structure

Each line in a JSONL file is a message object:

{
  "type": "assistant",
  "uuid": "abc123",
  "parentUuid": "xyz789",
  "timestamp": "2025-01-15T19:39:16.000Z",
  "sessionId": "session-uuid",
  "message": {
    "role": "assistant",
    "content": [...],
    "usage": {
      "input_tokens": 20000,
      "output_tokens": 500,
      "cache_read_input_tokens": 15000,
      "cache_creation_input_tokens": 5000
    }
  }
}

Assistant message content blocks:

  • type: "thinking" - Model thinking (has thinking field)
  • type: "tool_use" - Tool invocation (has name, input fields)
  • type: "text" - Text response (has text field)

Common Queries

Find Conversations

# List by modification time (most recent first)
ls -lt "$PROJECT_DIR"/*.jsonl

# Find by date
ls -la "$PROJECT_DIR"/*.jsonl | grep "Jan 15"

# Find by content
grep -l "search term" "$PROJECT_DIR"/*.jsonl

Extract Messages

# Get message by line number (1-indexed)
sed -n '42p' file.jsonl | jq .

# Get message by uuid
jq -c 'select(.uuid=="abc123")' file.jsonl

# All user messages
jq -c 'select(.type=="user")' file.jsonl

# All assistant messages
jq -c 'select(.type=="assistant")' file.jsonl

Tool Call Analysis

# List all tool calls
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use") | {name, input}' file.jsonl

# Count tool calls by name
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use") | .name' file.jsonl | sort | uniq -c | sort -rn

# Find specific tool calls
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use" and .name=="Bash")' file.jsonl

Skill Invocation Detection

Pattern: python3 -m skills\.([a-z_]+)\.

# Find all skill invocations
grep -oE "python3 -m skills\.[a-z_]+" file.jsonl | sort -u

# Find conversations using a specific skill
grep -l "python3 -m skills\.planner\." "$PROJECT_DIR"/*.jsonl

Token Usage

# Total tokens in conversation
jq -s '[.[].message.usage? | select(.) | .input_tokens + .output_tokens] | add' file.jsonl

# Token breakdown
jq -s '[.[].message.usage? | select(.)] | {
  input: (map(.input_tokens) | add),
  output: (map(.output_tokens) | add),
  cached: (map(.cache_read_input_tokens // 0) | add)
}' file.jsonl

# Token progression over time
jq -c 'select(.type=="assistant") | {ts: .timestamp[11:19], inp: .message.usage.input_tokens, out: .message.usage.output_tokens}' file.jsonl

Taxonomy Aggregation

# Count messages by type
jq -s 'group_by(.type) | map({type: .[0].type, count: length})' file.jsonl

# Character count in user messages
jq -s '[.[] | select(.type=="user") | .message.content | length] | add' file.jsonl

# Thinking block character count
jq -s '[.[] | select(.type=="assistant") | .message.content[]? | select(.type=="thinking") | .thinking | length] | add' file.jsonl

Subagent Analysis

# List subagents for a session
ls "${SESSION_DIR}/subagents/"

# Get subagent task description (first user message)
jq -c 'select(.type=="user") | .message.content' agent-*.jsonl | head -1

# Find Task tool calls in parent (these spawn subagents)
jq -c 'select(.type=="assistant") | .message.content[]? | select(.type=="tool_use" and .name=="Task") | .input' file.jsonl

Correlation

Subagent files (agent-{hash}.jsonl) don't link directly to parent Task calls. To correlate:

  1. List all subagent files under {session}/subagents/
  2. Read first user message of each for task description
  3. Match description to Task tool_use blocks in parent conversation

Repository Stats

Stars536
Forks94
LicenseMIT License