ontolog
from zpankz/mcp-skillset
MCP Skillset - Claude Code skills, references, and knowledge base
1 stars0 forksUpdated Jan 15, 2026
npx skills add https://github.com/zpankz/mcp-skillset --skill ontologSKILL.md
OntoLog
<lambda_calculus_core>
PRIMITIVES
──────────
ο (omicron) : Base — The grounded entity, input variable
τ (tau) : Terminal — The target purpose, output variable
λ (lambda) : Operation — The transformation, abstraction
UNIVERSAL FORM
──────────────
λο.τ : Base → Terminal
COMPOSITION
───────────
(λ₁ ∘ λ₂)ο = λ₁(λ₂(ο)) — Sequential composition
λ₁ ⊗ λ₂ = λο.(λ₁ο, λ₂ο) — Parallel composition
λ* = fix(λ) — Recursive fixpoint
</lambda_calculus_core>
<execution_dag>
graph LR
Q[Query] --> S[Simplicial Encoding]
S --> H[Homology Analysis]
H --> L[λ-Resolution]
L --> T[τ-Targeting]
T --> F[Filtration]
F --> O[Output]
subgraph Topological
H -.- PH[Persistent Homology]
H -.- SL[Sheaf Laplacian]
end
subgraph Lambda
L -.- LR[λ-Registry]
T -.- TR[τ-Registry]
end
</execution_dag>
| Pattern | Reference | Function |
|---|---|---|
| Type definitions | references/primitives.md | ο, λ, τ, Σ types |
| Topology operations | references/topology.md | Homology, filtration |
| Axiom systems | references/axioms.md | Lex constraints |
| Holonic structure | references/holons.md | Scale-invariance |
| Agent execution | agents/ | DSPy modules |
<holarchic_principle>
HOLON DEFINITION
────────────────
A holon H is simultaneously:
• A WHOLE containing sub-holons: H = {h₁, h₂, ..., hₙ}
• A PART within super-holons: H ∈ H' for some H'
SELF-SIMILARITY
───────────────
structure(H) ≅ structure(hᵢ) ≅ structure(H')
The same λ-operations apply at every scale:
λᵢ : οᵢ → τᵢ (micro)
λⱼ : οⱼ → τⱼ (meso)
λₖ : οₖ → τₖ (macro)
HOMOICONICITY
─────────────
The representation IS the thing represented.
A holon's structure encodes its own semantics.
</holarchic_principle>
<topological_foundation>
SIMPLICIAL COMPLEX Σ
────────────────────
Σ = (V, S) where:
• V = vertices (ο-bases)
• S = simplices (λ-operations)
• σ ∈ S ⟹ all faces of σ ∈ S
k-SIMPLEX
─────────
σₖ = [v₀, v₁, ..., vₖ]
0-simplex: vertex (ο)
1-simplex: edge (λ binary)
2-simplex: triangle (λ ternary)
k-simplex: k+1 vertices in relation
PERSISTENT HOMOLOGY
───────────────────
Track topological features across scales:
H₀: Connected components (ο-clusters)
H₁: Loops/cycles (λ-feedback)
H₂: Voids/cavities (τ-gaps)
PERSISTENCE DIAGRAM
───────────────────
{(bᵢ, dᵢ)} where:
bᵢ = birth (feature appears)
dᵢ = death (feature disappears)
|dᵢ - bᵢ| = persistence (significance)
</topological_foundation>
<lex_axiom_system>
TYPE SYSTEM
───────────
ο : NodeType — Base entities
λ : EdgeType — Operations/relations
τ : TerminalType — Target purposes
π : PropertyType — Attributes
STRUCTURAL AXIOMS
─────────────────
transitivity(λ): λ(a,b) ∧ λ(b,c) ⟹ λ(a,c)
symmetry(λ): λ(a,b) ⟹ λ(b,a)
reflexivity(λ): ∀a. λ(a,a)
acyclicity(λ): ¬∃path. λ*(a,a)
PROPERTY AXIOMS
───────────────
propagation(π,λ): λ(a,b) ∧ π(a,v) ⟹ π(b,v)
inheritance(π,λ): λ(a,b) ⟹ π(b) ⊇ π(a)
constraint(π,C): ∀x. π(x) ∈ C
PATH LOGIC
──────────
reach(a,b,n): ∃λ₁...λₙ. λₙ(...λ₁(a)...) = b
shortest(a,b): min{n : reach(a,b,n)}
all_paths(a,b): {p : p connects a to b}
</lex_axiom_system>
def execute(query: str) -> Holon:
"""
Universal execution: Query → Holon
λ-calculus over simplicial complexes with Lex validation.
"""
# Phase 1: ENCODE — Query → Simplicial Complex
Σ = agents.encoder.encode(query)
# Σ.vertices: Set[ο]
# Σ.simplices: Set[σₖ]
# Phase 2: ANALYZE — Compute Persistent Homology
dgm = agents.topologist.homology(Σ)
# dgm: PersistenceDiagram with birth-death pairs
# Phase 3: RESOLVE — Find λ-operations
Λ = agents.resolver.lambdas(Σ, dgm)
# Λ: Set[λ] filtered by persistence
# Phase 4: TARGET — Identify τ-terminals
T = agents.targeter.terminals(Σ, Λ)
# T: Set[τ] reachable from query bases
# Phase 5: VALIDATE — Check Lex axioms
valid = agents.validator.check(Σ, Λ, T)
# valid: ValidationResult with axiom compliance
# Phase 6: SYNTHESIZE — Generate holon
H = agents.synthesizer.holon(Σ, Λ, T, dgm)
# H: Holon with self-similar structure
return H
| Invariant | Check | Target |
|---|---|---|
| Acyclicity | ¬∃cycle in λ-graph | True |
| Groundedness | ∀ο. ∃λ. λ(ο) defined | 100% |
| Connectivity | H₀(Σ) = 1 | Single component |
...
Repository
zpankz/mcp-skillsetParent repository
Repository Stats
Stars1
Forks0