urf
from zpankz/mcp-skillset
MCP Skillset - Claude Code skills, references, and knowledge base
1 stars0 forksUpdated Jan 15, 2026
npx skills add https://github.com/zpankz/mcp-skillset --skill urfSKILL.md
Universal Reasoning Framework (URF)
λο.τ Universal Form
λ : Operation — The transformation
ο : Base — Input entity
τ : Terminal — Target output
λο.τ : Base → Terminal via Operation
Composition Operators:
(∘) : sequential — (λ₁ ∘ λ₂)ο = λ₁(λ₂(ο))
(⊗) : parallel — (λ₁ ⊗ λ₂)ο = (λ₁(ο), λ₂(ο))
(*) : recursive — fix(λ) = λ(fix(λ))
(|) : conditional — (λ | c)ο = Just(λ(ο)) if c(ο) else Nothing
Π-Classification
Classify every query before execution:
| Score | Pipeline | Holons | Tools | Validation | τ-Form |
|---|---|---|---|---|---|
| <2 | R0 | ∅ | ∅ | ∅ | ≤2 sentences |
| 2-4 | R1 | {ρ}∨{θ} | optional | implicit | 1-2¶ |
| 4-8 | R2 | {γ,η}∪{ρ,θ} | infranodus | η≥4 | mechanistic |
| ≥8 | R3 | Σ (all) | all | KROG∧η≥4∧PSR | comprehensive |
Score Calculation:
score = (
len(domains) * 2 + # Multi-domain bonus
reasoning_depth * 3 + # Deep reasoning weight
(1.5 if high_stakes else 1.0) + # Safety multiplier
(2 if requires_verification else 0) # Recency/fact-check
)
Auto-Escalation Triggers:
- Verification requests (
"latest","current","2025") → R3 - Trivial factual (
"What is...","Define...") → R0 - Medical/legal stakes → score × 1.5
Σ-Complex (Module Registry)
| Symbol | Module | Signature | When to Use |
|---|---|---|---|
ρ | reason | parse→branch→reduce→ground→emit | Any reasoning |
θ | think | thoughtbox ⊗ mental_models ⊗ notebook | Cognitive enhancement |
ω | ontolog | simplices→homology→sheaves | Formal structures |
γ | graph | extract→compress→validate(η≥4) | Knowledge graphs |
η | hierarchical | strategic→tactical→operational | Multi-scale problems |
κ | critique | thesis→antithesis→synthesis | Dialectical refinement |
α | agency | observe→reason→plan→act→reflect | Task execution |
ν | non-linear | orchestrator⊗workers→checkpoint | Uncertainty handling |
β | abduct | detect→infer→refactor→validate | Schema optimization |
χ | constraints | KROG: K∧R∧O∧G | Governance validation |
Edge Registry (Composition Patterns):
(ρ, θ): ∘ # reason feeds think
(θ, ω): ∘ # think grounds in ontolog
(ω, ρ): ∘ # ontolog constrains reason
(γ, η): ⊗ # graph parallel hierarchical
(κ, β): ∘ # critique feeds abduct
(β, κ): * # recursive refinement
(α, ν): ∘ # agency orchestrates non-linear
(ν, χ): | # non-linear conditional on constraints
Ψ-Execution Patterns
R0: Direct Response
λR0 = id # Identity transformation, <100ms
R1: Single Skill
λR1 = ρ.emit ∘ ρ.ground ∘ ρ.reduce ∘ ρ.parse
# parse→branch→reduce→ground→emit
R2: Skill Composition
λR2 = (
validate(η≥4) ∘
γ.compress ∘
(γ.extract ⊗ η.decompose) ∘
ρ.parse
)
R3: Full Orchestration
λR3 = (
χ.validate(KROG) ∘
β.refactor ∘
κ.synthesize ∘
(ρ ⊗ θ ⊗ ω).parallel ∘
κ.thesis ∘
ν.orchestrate ∘
α.observe
)
Γ-Topology Invariants
Required Metrics:
TARGETS = {
"η": ("|E|/|V|", "≥", 4.0), # Density ratio
"ζ": ("cycles", "=", 0), # Acyclicity
"κ": ("clustering", ">", 0.3), # Small-world
"φ": ("isolated", "<", 0.2), # Connectivity
}
Validation:
def validate(graph) -> bool:
return (
graph.edges / graph.nodes >= 4.0 and # η ≥ 4
not has_cycles(graph) and # ζ = 0
clustering_coefficient(graph) > 0.3 and # κ > 0.3
isolated_ratio(graph) < 0.2 # φ < 0.2
)
Remediation Actions:
η < 4: invokeinfranodus:getGraphAndAdvicewithoptimize="gaps"ζ > 0: invokeabduct.refactorwithcycle_breaking=Trueκ < 0.3: invokegraph.add_triangulationφ > 0.2: invokegraph.connect_orphans
χ-Constraints (KROG Theorem)
Valid(λ) ⟺ K(λ) ∧ R(λ) ∧ O(λ) ∧ G(λ)
K (Knowable): Effects transparent, auditable
R (Rights): Agent has authority over domain
O (Obligations): All duties satisfied
G (Governance): Within meta-bounds
Constraint Trichotomy:
| Type | Effect | Rigidity |
|---|---|---|
| Enabling | Expands action space | Dynamic |
| Governing | Channels possibilities | Static |
| Constitutive | Defines identity | Immutable |
Execution Lifecycle
1. RECEIVE → Parse query components
2. CLASSIFY → Score → Pipeline selection
3. LOAD → Memories + PKM + Context
4. ROUTE → Activate appropriate holons
5. REASON → Strategic→Tactical→Operational
6. GROUND → Gather evidence, verify premises
7. COMPOSE → Synthesize outputs from holons
8. VALIDATE → Check invariants (η≥4, KROG)
9. SYNTHESIZE → Format per pipeline τ-form
10. PERSIST → Update memories if new facts
11. EMIT → Deliver response
Convergence Detection:
...
Repository
zpankz/mcp-skillsetParent repository
Repository Stats
Stars1
Forks0