markitdown-skill

from julianobarbosa/claude-code-skills

No description

7 stars0 forksUpdated Jan 18, 2026
npx skills add https://github.com/julianobarbosa/claude-code-skills --skill markitdown-skill

SKILL.md

MarkItDown Skill

Microsoft's Python utility for converting various file formats to Markdown for LLM and text analysis pipelines.

Overview

MarkItDown converts documents while preserving structure (headings, lists, tables, links). It's optimized for LLM consumption rather than human-readable output.

Supported Formats

CategoryFormats
DocumentsPDF, Word (DOCX), PowerPoint (PPTX), Excel (XLSX, XLS)
MediaImages (EXIF + OCR), Audio (WAV, MP3 transcription)
WebHTML, YouTube URLs, Wikipedia, RSS/Atom feeds
DataCSV, JSON, XML, Jupyter notebooks (.ipynb)
ArchivesZIP (iterates contents), EPub
EmailOutlook MSG files

Quick Start

Installation

# Full installation (recommended)
pip install 'markitdown[all]'

# Minimal with specific formats
pip install 'markitdown[pdf,docx,pptx]'

# Using uv
uv pip install 'markitdown[all]'

Optional Dependencies

ExtraDescription
[all]All optional dependencies
[pdf]PDF file support
[docx]Word documents
[pptx]PowerPoint presentations
[xlsx]Excel spreadsheets
[xls]Legacy Excel files
[outlook]Outlook MSG files
[az-doc-intel]Azure Document Intelligence
[audio-transcription]WAV/MP3 transcription
[youtube-transcription]YouTube video transcripts

Command-Line Usage

# Basic conversion
markitdown document.pdf > output.md

# Specify output file
markitdown document.pdf -o output.md

# Pipe input
cat document.pdf | markitdown > output.md

# With Azure Document Intelligence
markitdown document.pdf -o output.md -d -e "<endpoint>"

Python API

from markitdown import MarkItDown

# Basic conversion
md = MarkItDown()
result = md.convert("document.xlsx")
print(result.text_content)

# With LLM for image descriptions
from openai import OpenAI

client = OpenAI()
md = MarkItDown(
    llm_client=client,
    llm_model="gpt-4o",
    llm_prompt="Describe this image in detail"
)
result = md.convert("image.jpg")
print(result.text_content)

# With Azure Document Intelligence
md = MarkItDown(docintel_endpoint="<your-endpoint>")
result = md.convert("complex-document.pdf")
print(result.text_content)

Common Use Cases

Batch Convert Directory

from markitdown import MarkItDown
from pathlib import Path

md = MarkItDown()
input_dir = Path("./documents")
output_dir = Path("./markdown")
output_dir.mkdir(exist_ok=True)

for file in input_dir.glob("*"):
    if file.is_file():
        try:
            result = md.convert(str(file))
            output_file = output_dir / f"{file.stem}.md"
            output_file.write_text(result.text_content)
            print(f"Converted: {file.name}")
        except Exception as e:
            print(f"Failed: {file.name} - {e}")

Process for LLM Context

from markitdown import MarkItDown

def prepare_for_llm(file_path: str) -> str:
    """Convert document to LLM-ready markdown."""
    md = MarkItDown()
    result = md.convert(file_path)

    # Add source reference
    content = f"# Source: {file_path}\n\n{result.text_content}"
    return content

# Use with your LLM
context = prepare_for_llm("report.pdf")

Extract YouTube Transcript

# CLI
markitdown "https://www.youtube.com/watch?v=VIDEO_ID" > transcript.md
# Python
from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("https://www.youtube.com/watch?v=VIDEO_ID")
print(result.text_content)

Image OCR with AI Description

from markitdown import MarkItDown
from openai import OpenAI

# Initialize with LLM support
client = OpenAI()
md = MarkItDown(
    llm_client=client,
    llm_model="gpt-4o"
)

# Convert image with AI description
result = md.convert("screenshot.png")
print(result.text_content)

Convert Jupyter Notebook

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("analysis.ipynb")
print(result.text_content)  # Code cells, outputs, markdown

Extract Wikipedia Content

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("https://en.wikipedia.org/wiki/Python")
print(result.text_content)  # Main article content only

Parse RSS Feed

from markitdown import MarkItDown

md = MarkItDown()
result = md.convert("https://example.com/feed.xml")
print(result.text_content)  # Feed entries as markdown

Plugin System

MarkItDown supports third-party plugins for extended functionality.

# List installed plugins
markitdown --list-plugins

# Enable plugins during conversion
markitdown --use-plugins document.pdf
# Enable plugins in Python
md = MarkItDown(enable_plugins=True)
result = md.convert("document.pdf")

Search GitHub for #markitdown-plugin to find available plugins.

MCP Server Integration

MarkItDown offers an MCP (Model Context Protocol) server for in

...

Read full content

Repository Stats

Stars7
Forks0
LicenseMIT License